Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pyroelectric performances of relaxor-based ferroelectric single crystals and related infrared detectors : Advances in Electronic Materials and Devices in the Far East

Identifieur interne : 000731 ( Chine/Analysis ); précédent : 000730; suivant : 000732

Pyroelectric performances of relaxor-based ferroelectric single crystals and related infrared detectors : Advances in Electronic Materials and Devices in the Far East

Auteurs : RBID : Pascal:11-0259520

Descripteurs français

English descriptors

Abstract

We report in this paper our discovery of remarkably excellent pyroelectric performances in the widely investigated, but still not weH understood, relaxor-based ferroelectric single-crystalline materials of the solid solution system of Pb(B1, 82)03(6): Mg2+, In3+..., B2: Nb5+, Ta'" ...) and PbTiO3, which have already been considered as next-generation piezoelectric materials with superhigh piezoelectric effect. Values of pyroelectric coefficient as high as 17.2 × 10-4 C/m2 K and of figure of merit for detectivity of 40.2 x 10-5 Pa -1/2 can be produced in the poled crystals specincaHy in the crystaHographic direction along the spontaneous polarization, i.e., the < 111 > direction in the rhombohedral phase. They show great potential as novel pyroelectric materials for wide applications in infrared (IR) detectors and thermal imagers. Commercialized IR detector prototypes have atso been fabricated with the spectro detectivity of 1.07 x 109 cm Hz1/2 W -1, which nearly doubles that of conventional LiTaO3 single-crystal-based commercialized IR detectors with similar detection mode. The relations :j among crysttU composition, iron doping, orientation, phase structure, domain configuration, and pyroelectric property, as well as between thermal parameters and dietectnc properties wiU also be presented here. They address the physics behind and the IR-sensor application using the strong pyroelectric effect of this complicated but promising family of pyroelectric materials. Examples are given for Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) and ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0259520

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pyroelectric performances of relaxor-based ferroelectric single crystals and related infrared detectors : Advances in Electronic Materials and Devices in the Far East</title>
<author>
<name>XIANGYONG ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Rd.</s1>
<s2>Jiading, Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Jiading, Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIAO WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Rd.</s1>
<s2>Jiading, Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Jiading, Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LINHUA LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Rd.</s1>
<s2>Jiading, Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Jiading, Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HAOSU LUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Rd.</s1>
<s2>Jiading, Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Jiading, Shanghai 201800</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Neumann, Norbert" uniqKey="Neumann N">Norbert Neumann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>InfraTec GmbH Infrarotmesstechnik und Sensorik</s1>
<s2>Dresden 01217</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01217</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH Infrarotmesstechnik und Sensorik</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH Infrarotmesstechnik und Sensorik</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PING YU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>InfraTec GmbH Infrarotmesstechnik und Sensorik</s1>
<s2>Dresden 01217</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>01217</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH Infrarotmesstechnik und Sensorik</wicri:noRegion>
<wicri:noRegion>InfraTec GmbH Infrarotmesstechnik und Sensorik</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0259520</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0259520 INIST</idno>
<idno type="RBID">Pascal:11-0259520</idno>
<idno type="wicri:Area/Main/Corpus">003054</idno>
<idno type="wicri:Area/Main/Repository">002667</idno>
<idno type="wicri:Area/Chine/Extraction">000731</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical composition</term>
<term>Dielectric properties</term>
<term>Domain structure</term>
<term>Ferroelectric materials</term>
<term>Figure of merit</term>
<term>Indium Lead Niobates Mixed</term>
<term>Infrared detectors</term>
<term>Lead magnesium niobates</term>
<term>Lead titanates</term>
<term>Monocrystals</term>
<term>Piezoelectric materials</term>
<term>Poling</term>
<term>Pyroelectric materials</term>
<term>Pyroelectricity</term>
<term>Relaxor</term>
<term>Solid solutions</term>
<term>Spontaneous polarization</term>
<term>Thermal properties</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pyroélectricité</term>
<term>Détecteur IR</term>
<term>Facteur mérite</term>
<term>Polarisation périodique</term>
<term>Polarisation spontanée</term>
<term>Composition chimique</term>
<term>Structure domaine</term>
<term>Propriété diélectrique</term>
<term>Propriété thermique</term>
<term>Indium Plomb Niobate Mixte</term>
<term>Relaxeur</term>
<term>Matériau ferroélectrique</term>
<term>Monocristal</term>
<term>Solution solide</term>
<term>Titanate de plomb</term>
<term>Matériau piézoélectrique</term>
<term>Matériau pyroélectrique</term>
<term>Magnoniobate de plomb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report in this paper our discovery of remarkably excellent pyroelectric performances in the widely investigated, but still not weH understood, relaxor-based ferroelectric single-crystalline materials of the solid solution system of Pb(B
<sub>1</sub>
, 82)03(6): Mg
<sup>2+</sup>
, In
<sup>3+</sup>
..., B
<sub>2</sub>
: Nb
<sup>5+</sup>
, Ta'" ...) and PbTiO
<sub>3</sub>
, which have already been considered as next-generation piezoelectric materials with superhigh piezoelectric effect. Values of pyroelectric coefficient as high as 17.2 × 10
<sup>-4</sup>
C/m
<sup>2</sup>
K and of figure of merit for detectivity of 40.2 x 10
<sup>-5</sup>
Pa
<sup>-1/2</sup>
can be produced in the poled crystals specincaHy in the crystaHographic direction along the spontaneous polarization, i.e., the < 111 > direction in the rhombohedral phase. They show great potential as novel pyroelectric materials for wide applications in infrared (IR) detectors and thermal imagers. Commercialized IR detector prototypes have atso been fabricated with the spectro detectivity of 1.07 x 10
<sup>9 </sup>
cm Hz
<sup>1/2</sup>
W
<sup>-1</sup>
, which nearly doubles that of conventional LiTaO
<sub>3</sub>
single-crystal-based commercialized IR detectors with similar detection mode. The relations :j among crysttU composition, iron doping, orientation, phase structure, domain configuration, and pyroelectric property, as well as between thermal parameters and dietectnc properties wiU also be presented here. They address the physics behind and the IR-sensor application using the strong pyroelectric effect of this complicated but promising family of pyroelectric materials. Examples are given for Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-PbTiO
<sub>3</sub>
(PMNT) and ternary Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-PbTiO
<sub>3</sub>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>208</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pyroelectric performances of relaxor-based ferroelectric single crystals and related infrared detectors : Advances in Electronic Materials and Devices in the Far East</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XIANGYONG ZHAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAO WU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LINHUA LIU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HAOSU LUO</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NEUMANN (Norbert)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PING YU</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Rd.</s1>
<s2>Jiading, Shanghai 201800</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>InfraTec GmbH Infrarotmesstechnik und Sensorik</s1>
<s2>Dresden 01217</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1061-1067</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000191600850120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0259520</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report in this paper our discovery of remarkably excellent pyroelectric performances in the widely investigated, but still not weH understood, relaxor-based ferroelectric single-crystalline materials of the solid solution system of Pb(B
<sub>1</sub>
, 82)03(6): Mg
<sup>2+</sup>
, In
<sup>3+</sup>
..., B
<sub>2</sub>
: Nb
<sup>5+</sup>
, Ta'" ...) and PbTiO
<sub>3</sub>
, which have already been considered as next-generation piezoelectric materials with superhigh piezoelectric effect. Values of pyroelectric coefficient as high as 17.2 × 10
<sup>-4</sup>
C/m
<sup>2</sup>
K and of figure of merit for detectivity of 40.2 x 10
<sup>-5</sup>
Pa
<sup>-1/2</sup>
can be produced in the poled crystals specincaHy in the crystaHographic direction along the spontaneous polarization, i.e., the < 111 > direction in the rhombohedral phase. They show great potential as novel pyroelectric materials for wide applications in infrared (IR) detectors and thermal imagers. Commercialized IR detector prototypes have atso been fabricated with the spectro detectivity of 1.07 x 10
<sup>9 </sup>
cm Hz
<sup>1/2</sup>
W
<sup>-1</sup>
, which nearly doubles that of conventional LiTaO
<sub>3</sub>
single-crystal-based commercialized IR detectors with similar detection mode. The relations :j among crysttU composition, iron doping, orientation, phase structure, domain configuration, and pyroelectric property, as well as between thermal parameters and dietectnc properties wiU also be presented here. They address the physics behind and the IR-sensor application using the strong pyroelectric effect of this complicated but promising family of pyroelectric materials. Examples are given for Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-PbTiO
<sub>3</sub>
(PMNT) and ternary Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-PbTiO
<sub>3</sub>
.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G70</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Pyroélectricité</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Pyroelectricity</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Facteur mérite</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Figure of merit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Factor mérito</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Polarisation périodique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Poling</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Polarisation spontanée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spontaneous polarization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Polarización espontánea</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Composition chimique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Chemical composition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure domaine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Domain structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Propriété diélectrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Dielectric properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Indium Plomb Niobate Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Indium Lead Niobates Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Relaxeur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Relaxor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Matériau ferroélectrique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ferroelectric materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Solution solide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Solid solutions</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Titanate de plomb</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Lead titanates</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Matériau piézoélectrique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Piezoelectric materials</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Matériau pyroélectrique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Pyroelectric materials</s0>
<s5>21</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Magnoniobate de plomb</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Lead magnesium niobates</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="3" l="SPA">
<s0>Niobato de Magnesio y plomo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>178</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000731 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000731 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0259520
   |texte=   Pyroelectric performances of relaxor-based ferroelectric single crystals and related infrared detectors : Advances in Electronic Materials and Devices in the Far East
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024